

VEL TECH HIGH TECH Dr.Rangarajan Dr.Sakunthala Engineering College

An Autonomous Institution

Approved by AICTE – New Delhi, Affiliated to Anna University – Chennai

COURSEDETAILS

FACULTYNAME	: C.D.MERLIN	FACULTYCODE	: HTS1630
COURSENAME	: DIGITAL LOGIC CIRCUITS	COURSECODE	: 21HE32T
YEAR/SEM/ DEPT	: II YR/III SEM/CSE – AIML	ACADEMICYEAR	: 2023-2024 (ODDSEM)

OBJECTIVES

• To Simplify logic digital Circuits using Boolean Functions.

C302.1: *Simplify* logic functions using Boolean Algebra and K-map.

SYLLABUS

UNIT I BOOLEAN ALGEBRA AND LOGIC GATES

Number Systems – Arithmetic Operations – Binary Codes- Tabulation method – Theorems and Properties of Boolean Algebra – Boolean Functions – Canonical and Standard Forms – Simplification of Boolean Functions using Karnaugh Map – Logic Gates – Universal gates Implementations.

UNIT II COMBINATIONAL LOGIC CIRCUITS

Combinational Circuits – Analysis and Design Procedures – Adder-Subtractor -Multiplier – Decoders – Encoders – Multiplexers –Demultiplexers-Implementation of combinational circuits using mux, demux, encoder, decoder-Introduction to VHDL – VHDL Models of Combinational Circuits-Case study (Calender subsystem).

Batch No.	Assignment Problems	CO Relevance	Knowledge Level
1	 (A)Snerdley's Automated Cafeteria orders a machine to dispense coffee, tea, and milk. Design the machine so that it has a button (input line) for each choice and so that a customer can have <i>at most one</i> of the three choices. Diagram the circuit to insure that the "at most one" condition is met. (B)Implement EX-OR gate using only NAND gates (C) Design a logic circuit to simulate the function f(A,B,C)=A(B+C) by using only NAND gates. *Introduction *Truth table *Logic gate Representation *Solution 		K4
2	 *Conclusion *References The nation of Upper Slobovia has gained a missile defense capability governed by its Security Council. The Council consists of four members:the U.S. (Upper Slobovian) President and three Counselors (theChiefs of Staff of the Army and Air Force plus the President's UncleHomer). The missile system is to be activated by a device obeying these rules: (A)each member of the Security Council has a button to push; 	CO1	K4

Approved by AICTE – New Delhi, Affiliated to Anna University – Chennai

(B) the missiles fire only if the President and at least one Counselor push their buttons.		
(C) Design the rocket firing circuitry.		
*Introduction *Truth table *Logic gate Representation *Solution *Conclusion *References		
Most calculators, digital clocks, and watches use the "seven segment display" format. In this setup, as the diagram shows, there are seven segments that can be lit in different combinations to form the numerals 0 through 9. For example, "1" is formed by lighting segments b and c ; "2" consists of segments a , b , g , e , and d . "4" is composed of segments b, c , f , and g .		K4
(A)Design circuitry to run a seven-segment display for one digit. The input consists of a four-bit digit (where each bit is an input line). The outputs are a, b, c, d, e, f , and g of the seven segment diagram (1 = light the segment, 0 = do not light the segment).		
(B)From a truth table, write and simplify <i>seven</i> Boolean expressions.		
(C) Draw the seven minimal circuits.		
Note: There are only <i>ten</i> rows of input in the table corresponding to the digits 0 (0000two through 9 (1001two).		
*Introduction *Truth table *Logic gate Representation *Solution *Conclusion *References		
(A)A circuit outputs a digit in the form of 4 bits. 0 is represented by 0000, 1 by 0001,, 9 by 1001. A combinational circuit is to be designed which takes these 4 bits as input and outputs 1 if the digit \geq 5, and 0 otherwise. If only AND, OR and NOT gates may be used, what is the minimum number of gates required?	001	12 4
(B)Use DeMorgan's Theorems to simplify the following expressions: $\overline{\overline{a} + d} \cdot \overline{\overline{b} + c} \cdot \overline{\overline{c} + d}$	CO1	K4
(C) Solve $\overline{x} + y\overline{x} = \overline{x}(1+y) = \overline{x}$		

WithreferencetoNBA –SARGuideline:CriteriaNo.2.1.1B,3.1.1&3.1.2

VEL TECH HIGH TECH Dr.Rangarajan Dr.Sakunthala Engineering College **An Autonomous Institution**

*Introduction *Truth table *Logic gate Representation *Solution *Conclusion *References		
Karnaugh Maps are useful for finding minimal implementations of Boolean expressions with only a few variables. However, they can be a little tricky when "don't cares" (X) are involved. Using the following K- Maps:		
ab cd 00 01 11 10 cd 00 01 11 10	CO1	K4
00 X 0 0 1 00 1 X 0 1		
01 1 0 0 X 01 1 1 1 0		
11 0 X 0 1 11 0 0 X 0		
10 0 0 1 10 X 0 1 1		
 i) Find the minimal sum of products expression. ii) Find the minimal product of sums expression. iii) Are your solutions unique? If not, list and show the other minimal expressions. 		
*Introduction *Steps involved *Solution *Conclusion *References		
(A)Implement the Same Boolean Function with NAND only in the following Circuit	CO1	K4
(B)Illustrate the range of values that can be represented using n-bit 2's complement form of representation with an example? What is the corresponding range with n-bit 1's complement form?		
(C) Write the applications of Gray code		
*Introduction*Explanation*Solution*Conclusion *References		
(A) Implement the Same Boolean Function with NAND only in the following Circuit		

VEL TECH HIGH TECH Dr.Rangarajan Dr.Sakunthala Engineering College

An Autonomous Institution

8	 A B Convert hexadecimal B2.A1 to Octal equivalent. (B)Convert hexadecimal B2.A1 to Octal equivalent. (C) Convert Boolean expression in standard form F=y'+xz'+xyz *Introduction*Explanation*Solution*Conclusion*References (A)What is the Boolean expression for the output f of the Combinational logic circuit of NOR gates given below? 		
	(B)Express the Boolean function $F = A + B^{*}C$ as standard sum of minterms. (C) Express the Boolean function $F = xy + x^{*}z$ as a product of maxterms *Introduction*Explanation*Solution*Conclusion*References	CO1	K4
9	(A) Find the output of the following combinational circuit.		
		CO1	K4

	(B)Select the gate which produces a high output signal only when both inputs are low and explain how it can be used in in a real-time fire and smoke detection to alert occupants of a building.		
	(C)Design a logic circuit that has three inputs A,B,C whose output will be high only when a majority of the inputs are high. *Introduction*Explanation*Solution*Conclusion*References		
0	(C) Design a gray to binary code converter.		K4
1	*Introduction*Explanation*Solution*Conclusion*References (A)Design a binary adder that adds three two-bit numbers. The six inputs are the bits of the three numbers to be added. The four outputs are the bits of the sum. Draw a separate circuit for each bit of the sum. (B)Consider the circuit in below figure. Find f (B)Consider the circuit $\int_{C}^{0} \int_{C}^{1} \int_{Multiplexer}^{4 \text{ to } 1} \int_{A}^{B} \int_{B}^{4 \text{ to } 1} \int_{A}^{B} \int_{B}^{A \text{ to } 1} \int_{B}^{A \text{ to } 1} \int_{B}^{B} \int_{B}^{$	CO2	K4
	A B (C) If half adders and full adders are implemented using gates, then for the addition of two 17 bit numbers (using minimum gates) How many number of half adders and full adders will be required?		

2	(A)What Boolean function does the circuit below realize ?		
2	(A) What Boolean function does the circuit below realize ? z x x x z x z x z x z x z z z x z z z z z z z z	CO2	K4
	*Introduction*Explanation*Solution*Conclusion*References		
.3	(A) Consider the following circuit. What represents $f(x, y, z)$?	CO2	K4
	(B)Use DeMorgan's Theorems to simplify the following expressions: $\overline{\overline{(a+d)} \cdot \overline{(\overline{b}+c)}}$		
	(C) Implement a two-input AND gate using two 2-1 multiplexers.		
	*Introduction*Explanation*Solution*Conclusion*References		
4	(A)Design a two-bit binary adder . For example, $10 + 11 = 101$. The truth table should contain four input columns for the bits of the numbers to be added and three output columns, one for each bit of the sum. Draw a separate circuit for each bit of the sum.		
	(B)Implementation of Half Adder using NAND gates	CO2	K4
	(C)Subtract 748 from 983 using 9's complement method		

	*Introduction*Explanation*Solution*Conclusion*References		
15	(A)For the given multiplexer circuit, determine the logic function.		
	(B) Implement the boolean expression $F(A, B, C) = \sum m(0, 2, 5, 6)$ using 4 : 1	CO2	K4
	multiplexer.		
	(C)Implementation of Half Subtractor using NAND gates		
	*Introduction*Explanation*Solution*Conclusion*References		
16	(A)Implement a 3-to-8 line decoder using a 2-to-4 line decoder and a 3-input AND gate.		
	(B)Design a 16-channel analog multiplexer using a combination of digital multiplexers and demultiplexers. Implement this design using a VHDL model and test its functionality by simulating various input scenarios.		K4
	(C)Implementation of Half Subtractor using NOR gates		
	*Introduction*Explanation*Solution*Conclusion*References		
17	(A)Design a VHDL model for a 4-to-1 multiplexer using only basic logic gates (AND, OR, NOT). Test the design using suitable test vectors.		
	(B) Implement a VHDL model for a BCD (Binary Coded Decimal) to 7- segment display decoder. Verify the correctness of the decoder by providing different BCD inputs and observing the corresponding 7-segment outputs.		K4
	(C)Implementation of Half Adder using NOR gates		
	*Introduction*Explanation*Solution*Conclusion*References		
18	(A)How can adder and subtractor circuits be integrated into larger systems or architectures, such as CPUs or digital signal processors? Discuss the interactions, dependencies, and optimizations that can be employed for seamless integration.		
	(B) Can we design an adder circuit that operates on non-binary inputs, such as fractional or decimal numbers? Discuss the challenges and potential	CO2	K4

Approved by AICTE – New Delhi, Affiliated to Anna University – Chennai

	applications of such a design.		
	(C)Implement BCD to 7 Segment Decoder		
	*Introduction*Explanation*Solution*Conclusion*References		
19	(A) How can multiplier circuits be adapted or optimized for specific applications, such as digital filters, image processing, or cryptography? Discuss the requirements and considerations for designing multipliers in specialized domains.		
	(B) How can we optimize MUX circuits to achieve faster switching times and higher data throughput? Explore novel techniques, architectures, or materials that can improve the performance of MUX.	CO2	K4
	(C) Implement the boolean expression $F(A, B, C) = \sum m(2, 3, 6, 7)$ using a multiplexer.		
	*Introduction*Explanation*Solution*Conclusion*References		
20	(A) Design the conversion circuit that convert BCD code to excess-3 code?		
	(B) Design a combinational circuit that generates 9's complement of a 3 input numbers and implementing it using 3 gates only.		
	(C) Explain the procedure of designing the combinational circuits.	CO2	K4
	*Introduction*Explanation*Solution*Conclusion*References		

REFERENCES

- 1. John F. Wakerly, Digital Design Principles and Practices, Fifth Edition, Pearson Education, 2017.
- 2. M. Morris R. Mano, Michael D. Ciletti, —Digital Design: With an Introduction to the Verilog HDL, VHDL, and System Verilog, 6th Edition, Pearson Education, 2017.
- 3. Charles H. Roth Jr, Larry L. Kinney, Fundamentals of Logic Design, Sixth Edition, CENGAGE Learning, 2013
- 4. Digital Circuits and Design-S Salivahanan
- 5. Digital Electronics-A.P.Godse, D.A.Godse
- 6. Digital Electronics- Ramesh babu
- 7. Donald D. Givone, Digital Principles and Designl, Tata McGraw Hill, 2003.